Modal Logics for Reasoning about Multiagent Systems

نویسندگان

  • Nikolay V. Shilov
  • Natalya Olegovna Garanina
چکیده

It becomes evident in recent years a surge of interest to applications of modal logics for specification and validation of complex systems. It holds in particular for combined logics of knowledge, time and actions for reasoning about multiagent systems (Dixon, Nalon & Fisher, 2004; Fagin, Halpern, Moses & Vardi, 1995; Halpern & Vardi, 1986; Halpern, van der Meyden & Vardi, 2004; van der Hoek & Wooldridge, 2002; Lomuscio, & Penczek, W., 2003; van der Meyden & Shilov, 1999; Shilov, Garanina & Choe, 2006; Wooldridge, 2002). In the next paragraph we explain what are logics of knowledge, time and actions from a viewpoint of mathematicians and philosophers. It provides us a historic perspective and a scientific context for these logics. For mathematicians and philosophers logics of actions, time, and knowledge can be introduced in few sentences. A logic of actions (ex., Elementary Propositional Dynamic Logic (Harel, Kozen & Tiuryn, 2000)) is a polymodal variant of a basic modal logic K (Bull & Segerberg, 2001) to be interpreted over arbitrary Kripke models. A logic of time (ex., Linear Temporal Logic (Emerson, 1990)) is a modal logic with a number of modalities that correspond to “next time”, “always”, “sometimes”, and “until” to be interpreted in Kripke models over partial orders (discrete linear orders for LTL in particular). Finally, a logic of knowledge or epistemic logic (ex., Propositional Logic of Knowledge (Fagin, Halpern, Moses & Vardi, 1995; Rescher, 2005)) is a polymodal variant of another basic modal logic S5 (Bull & Segerberg, 2001) to be interpreted over Kripke models where all binary relations are equivalences. BACKGROUND: mODAL LOGICS

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Logic for Reasoning about Explicit Knowledge in Finite Agents (Abstract)

The Problem Epistemic logics are logics for reasoning about knowledge in systems of agents. Traditional modal epistemic logics are information-theoretical, in the sense that they consider knowledge about propositions and that agents know everything that follows from the information they possess. Although proved useful in many applications, this view is unrealistic when modeling explicit knowled...

متن کامل

Complexity of multiagent BDI logics with restricted modal context

We present and discuss a novel language restriction for modal logics for multiagent systems that can reduce the complexity of the satisfiability problem from EXPTIME-hard to NPTIME-complete. In the discussion we focus on a particular BDI logic, called TeamLog, which is a logic for modelling cooperating groups of agents and which possesses some of the characteristics typical to other BDI logics....

متن کامل

Verifying the Modal Logic Cube Is an Easy Task (For Higher-Order Automated Reasoners)

Prominent logics, including quantified multimodal logics, can be elegantly embedded in simple type theory (classical higher-order logic). Furthermore, off-the-shelf reasoning systems for simple type type theory exist that can be uniformly employed for reasoning within and about embedded logics. In this paper we focus on reasoning about modal logics and exploit our framework for the automated ve...

متن کامل

Modal tableaux for verifying security protocols

To develop theories to specify and reason about various aspects of multi-agent systems, many researchers have proposed the use of modal logics such as belief logics, logics of knowledge, and logics of norms. As multi-agent systems operate in dynamic environments, there is also a need to model the evolution of multi-agent systems through time. In order to introduce a temporal dimension to a beli...

متن کامل

Interactions between Knowledge and Time in a First-Order Logic for Multi-Agent Systems: Completeness Results

We investigate a class of first-order temporal-epistemic logics for reasoning about multiagent systems. We encode typical properties of systems including perfect recall, synchronicity, no learning, and having a unique initial state in terms of variants of quantified interpreted systems, a first-order extension of interpreted systems. We identify several monodic fragments of first-order temporal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009